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ABSTRACT 

Split keyboards are widely used on hand-held touchscreen 
devices (e.g., tablets). However, typing on a split keyboard of-
ten requires eye movement and attention switching between 
two halves of the keyboard, which slows users down and 
increases fatigue. We explore peripheral typing, a superior 
typing mode in which a user focuses her visual attention on 
the output text and keeps the split keyboard in peripheral 
vision. Our investigation showed that peripheral typing re-
duced attention switching, enhanced user experience and 
increased overall performance (27 WPM, 28% faster) over 
the typical eyes-on typing mode. This typing mode can be 
well supported by accounting the typing behavior in statisti-
cal decoding. Based on our study results, we have designed 
GlanceType, a text entry system that supported both periph-
eral and eyes-on typing modes for real typing scenario. Our 
evaluation showed that peripheral typing not only well co-
existed with the existing eyes-on typing, but also substan-
tially improved the text entry performance. Overall, periph-
eral typing is a promising typing mode and supporting it 
would signifcantly improve the text entry performance on 
a split keyboard. 
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1 INTRODUCTION 

Split keyboards are specially designed to account for the 
form factor of tablet computers (e.g., Samsung Galaxy Tab, 
Apple iPad, and Microsoft Surface). It split the conventional 
QWERTY keyboard into two halves and positions them on 
the left and right of the touchscreen respectively. Users hold 
the device with two hands and type with both thumbs. Com-
pared with regular keyboards, this allows for a steadier grip 
during walking, sitting or lying, saves precious screen real 
estate [17], and potentially improves typing performance due 
to two-thumb use [3, 12, 21, 24]. Despite these advantages, a 
split keyboard sufers from a weakness in the conventional 
eyes-on typing mode: users have to frequently switch visual 
focus back and forth between two keyboard halves. This not 
only causes eye/neck fatigue but also limits the typing speed 
[5, 16]. 

Figure 1: A user types with the split keyboard on a tablet 
computer. He needs to see three locations when typing 
(marked in blue circles): the text feedback (URL bar in this 
fgure), and the left and right keyboard halves. When he is 
focusing on the feld of text feedback, two split keyboard 
halves are located in his peripheral vision. 
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In this paper, we investigate typing with peripheral vi-
sion (peripheral typing), in which a user focuses her visual 
attention on the output text and keeps the keyboard in her 
peripheral vision (Figure 1). This mode does not require the 
user to switch visual attention frequently between diferent 
parts of the interface. Peripheral typing assumes users are 
familiar with two-thumb typing (e.g., on a smartphone) and 
can type with spatial and muscle memory when the keyboard 
is located in peripheral vision. Unlike touch typing [18] and 
invisible keyboard [39] that the keyboard feedback vanishes 
in typing process, a user still gains partial visual feedback 
of the keyboard when typing with peripheral vision, which 
contrasts and complements recent progress of text entry re-
search. We believe interaction with peripheral vision is a 
promising paradigm where more and more interaction tasks 
[10, 27, 34] are competing for users’ visual attention. 

We follow an iterative approach to validate the feasibility 
of peripheral typing on a split keyboard. We frst conduct 
a Wizard-of-Oz experiment to collect touch data and com-
pare it with two baseline modes: eyes-on and no-keyboard. 
Results show peripheral vision can indeed provide a certain 
degree of visual feedback for controlling thumb tapping. The 
touch accuracy of peripheral typing is lower than eyes-on 
but signifcantly higher than no-keyboard setting. We then 
combine the derived touch model and a unigram word-level 
language model to develop an input decoder. Both simula-
tion and real-user studies show that the decoding is efective. 
When entering in-vocabulary words, peripheral typing (27 
WPM) improves the input speed by 28% over the typical eyes-
on typing (21 WPM). It also reduces the attention switching 
and increases user satisfaction. 

To support real use that involves typing out-of-vocabulary 
words (e.g., uncommon names or addresses), we further pro-
pose a new design of text entry interface that features two 
candidate lists: one beneath the output text associated with 
peripheral typing and the other above the keyboard halves 
associated with the default split keyboard output. With this 
design, users can spontaneously choose between peripheral 
typing and eyes-on typing with no explicit mode switching 
operation. This design allows peripheral typing to be eas-
ily incorporated with the current typing approach (e.g., the 
commercial keyboard) with little confict. We also evaluate 
our prototype - GlanceType in a real corpus with out-of-
vocabulary words and non-alphabetic characters. Results 
show that GlanceType increase the input speed by 7.0% com-
pared with the commercial keyboard. 
Our major contributions are two-folded. First, we have 

studied an unexplored typing mode - peripheral typing. Our 
investigation showed that it was not only feasible but also 
promising and even superior over the typical eyes-on typ-
ing. The reasons are 1) users can to a degree control thumb 
tapping with peripheral vision; and 2) accounting for the 

peripheral typing behavior in statistical decoding is efective 
in resolving the noise generated in this typing mode. Sec-
ond, we have designed a two-candidate-region mechanism 
supporting spontaneously choosing between eyes-on and 
peripheral typing with no need for an explicit mode switch. 
We have incorporated this mechanism into a text entry sys-
tem called GlanceType. A user study showed that GlanceType 
improved the performance over a commercial split keyboard. 

2 RELATED WORK 

Our work is related to text input, split keyboard and periph-
eral vision. To our knowledge, no work has been done to 
investigate the efect of peripheral vision in text input task. 

Typing on QWERTY Layout with Visual Constrains 
Touch typing, that the user performs ten-fnger typing with-
out looking at the physical keyboard, is a well-known solu-
tion to input text efciently in desktop PC scenario. After 
long-term training, touch typing speeds of everyday typ-
ists can achieve 34-79 WPM [8]. The typing performance 
of blind people [22] or able-bodied people in blind environ-
ments (e.g., virtual reality) [35] has also been researched. 
As the QWERTY keyboard layout has been implemented in 
most touchscreen devices like smartphones, smart tabletops, 
tablets, etc., many works have tried to bring the touch typing 
from the physical keyboard to the soft keyboard. 
Typing with ten fngers on touchscreens has been exten-

sively studied. When typing on a tabletop touchscreen sur-
face [9], touch points without the visual keyboard were rela-
tively noisier than that with the visual keyboard. Splitting 
and rotating the whole keyboard on the back of the tablet 
with the fnger-to-key assignment remaining enables ten-
fnger typing when gripping the tablet. Both the physical 
version (RearType [26]) and the virtual version (Sandwich 
Keyboard [25]) of the keyboard have been proposed. 
In order to type on a small keyboard (e.g., smartphones), 

thumb-based typing postures, including one thumb and two 
thumbs, are generally used. Previous works have found it 
possible for keyboard users to use thumbs to type eyes-freely 
on mini physical keyboards [6] or soft keyboards [18, 33]. 
Users are also able to type on an invisible keyboard [39] 
with the speed close to that on a visible keyboard. That is, 
the users possess the ability to seek keys with thumbs in 
limited visual condition when they were well trained on 
the keyboard layout (so-called spatial memory and muscle 
memory). Peripheral vision, one kind of important visual 
infuences, is worth to be explored in this area. 

Improving Split Keyboards 
To our knowledge, only two works have been done to im-
prove the performance of split keyboards. In both these 
works, typing on split keyboards follows an eyes-on mode 
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where users need to frequently switch visual attention among 3 STUDY 1: TOUCH MODEL WITH PERIPHERAL 
the text feedback and the two keyboard halves. 
A new split keyboard layout - KALQ was designed to 

improve two-thumb text entry on tablet devices [23]. The 
layout of keys on both sides of the keyboard was rearranged 
and optimized. Input speed of this keyboard can achieve 
37 WPM with only 5% error rate after weeks of training. 
However, the new keyboard layout would be a barrier to 
new users, preventing immediate and efcient use. 
Bimanual gesture keyboard [5] was proposed to enable 

two-thumb gesture input on the split keyboard. This work 
designed two methods for gesture interaction and a multi-
stroke gesture recognition algorithm. The typing speed of 
bimanual gesture keyboard achieved 30 WPM, a little lower 
than unimanual gesture keyboard. 
New keyboard layouts or typing methods may sacrifce 

learnability for higher input speed. On the contrary, periph-
eral typing balances this trade-of, allowing users to type 
faster in the original way and the familiar layout with the 
only requirement of focusing on the text feld. 

Input and Output with Peripheral Vision 

Peripheral vision is a part of vision that occurs outside the 
very center of gaze [36]. The visual feld 4◦ away from direct 
gaze is called peripheral vision [29], while the combined 
visual feld of a pair of human eyes can be up to 130-135◦ 

vertical and 200-220◦ horizontal [7]. Visual acuity declines 
by about 50% every 2.5◦ from the center up to 30◦, then it 
declines more steeply [4]. Humans are weak in distinguishing 
details, colors, and shapes with peripheral vision [28]. 
Peripheral vision was considered as the feedback to help 

users complete some input tasks in previous researches, like 
rotating a knob [34], pressing tactile buttons on a keypad 
[27], and pointing indirectly on a touchpad [10]. Results 
consistently showed the performance with peripheral visual 
feedback is worse than that with direct visual feedback, and 
is better than that without visual feedback. These results indi-
cate that peripheral vision can be well employed to enhance 
input tasks compared with the totally eyes-free condition. 
We expect the split keyboard in peripheral vision would be 
positive visual feedback to help users for typing tasks. 
Some researches studied visual output issues in human’s 

peripheral vision. The research about motion processing [31] 
pointed out that users’ reaction time of the motion increased 
when the target velocity declined in users’ peripheral vi-
sion. Two researches [14, 19] pointed out that the motion 
was a very strong stimulus to improve the perception in 
peripheral vision, while other stimuli (e.g., color, luminance, 
shape) were not easy to perceive. We expect users’ moving 
thumbs tapping on the keyboard would be also helpful to 
the perception of the keyboard and key positions. 

VISION 

The goal of this study is to collect the touch data of peripheral 
typing on the split keyboard for analysis and understanding. 
We expected the data would provide support for the feasibil-
ity of two-thumb typing with peripheral vision, and provide 
insights of diferent typing modes. 

Participants 
We recruited 18 participants (15 males and 3 females, aged 18-
25) from the university campus. They were all right-handed 
and had daily experience of typing on QWERTY keyboards 
on their personal mobile phones. All of them had experi-
ence with tablets. All of them focused their attention on the 
keyboard when typing on tablets before. 

Apparatus and Experiment Platform 

We used Samsung Galaxy Tab SM-T800 tablet as the device. 
The touchscreen dimensions were 228mm×142mm with a 
resolution of 2560×1600. The weight was 465g. We developed 
an Android application as the software of our experiment 
platform. The interface was designed in landscape mode and 
consisted of two main components: the split keyboard and 
the text feld (Figure 2). 

Figure 2: Experiment interface on the tablet. 

The split keyboard was rendered using a screenshot of 
the commercial landscape split keyboard on Samsung tablet. 
The efective size of one key was 9.25mm×11.50mm. The 
two halves of the split keyboard were located at the bottom 
left and right corner of the touchscreen respectively, which 
is the default setting of the tablet. The placement of the split 
keyboard was confrmed by participants as a comfortable 
setting so it was easy for participants to tap on the keyboard 
while gripping the tablet. 

The text feld was placed at the top middle part of the 
tablet. It contained a sample sentence and an editing bar. 
Participants were required to type the sample sentence in 
the editing bar. Sentences consisted of lowercase letters and 
spaces. We also designed a right swipe gesture to substitute 
the space key, and a left swipe gesture to substitute the 
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backspace key, with the aim to distinguish them with letter-
tapping. After fnishing the current sentence, a right swipe 
would lead to the next sentence. 

Similar to previous works [3, 9, 11, 39], we designed a 
Wizard-of-Oz experiment to mimic a real typing scenario. In 
this way, the interface always displayed the correct character 
no matter where the participant tapped on the touchscreen 
[18]. An asterisk would appear when the platform detected 
a mismatch of a letter and space, and participants were re-
quired to correct it. Participants were notifed the output 
text was rigged. For the purpose of collecting more realistic 
typing data, we informed participants to imagine that the 
keyboard algorithm would be intelligent enough to perfectly 
comprehend their input. 

Experiment Design 

During the experiment, we set the distance between the text 
feld and the split keyboard to be 8-18cm, and the distance 
between the tablet and the user’s eyes to be 35-50cm. The 
corresponding visual angle between the text feld and the 
split keyboard is 9.1-28.8◦, which falls into a human’s near 
peripheral vision [36]. Participants reported they were not 
able to avoid catching a glimpse of the keyboard in typing 
when focusing on the text feld. 

As the goal of the experiment is to collect participants’ 
typing data with and without gazing at the keyboard, we 
also controlled the keyboard visibility as a factor to test 
the efect of peripheral vision. We designed a within-subject 
experiment with mode being the only factor, each participant 
was required to type in all the three modes: 

Eyes-on: In this mode, we ask users to look at the desired 
key when tapping it, which means the gaze needs to switch 
between the text feedback feld and the two keyboard halves. 
This is the typical way when typing on split keyboards in 
daily lives. 
Peripheral: In this mode, the keyboard is visible, but users 

were required not to look at it directly. That is, participants 
only stare at the text feld during typing, while the keyboard 
is visible in their peripheral vision. In this mode, users type 
on split keyboards without attention switching. 
No-Keyboard: In this mode, the keyboard is completely 

invisible, so that users only look at the text feld and rely on 
their spatial and muscle memory to input text. 
Peripheral and No-keyboard are both gaze-fxed modes 

where participants are required to type without gazing at the 
keyboard or their thumbs. In these two modes, participants 
partially leverage their familiarity with the QWERTY layout 
to input. We did not control the visual angle of the keyboard 
in participants’ peripheral vision, but we recorded videos to 
monitor participants’ eyeballs to ensure they did not gaze at 
the keyboard. 

Procedure 

We frst introduced the goal of this experiment to partici-
pants. Before the experiment, participants were required to 
familiarize themselves with typing in the three modes. We 
did not stipulate participants’ ways of gripping the tablet as 
long as their thumbs could tap on the split keyboard com-
fortably. According to the expertise of two-thumb typing on 
QWERTY keyboard, this warm-up phase took 3-5 minutes. 
The experiment consisted of three sessions, with each 

session corresponding to one mode. The order of the three 
modes was counterbalanced. In each session, the participant 
was required to type 40 phrases randomly chosen from the 
MacKenzie and Soukoref phrases set [20]. We told the par-
ticipants to type as naturally as possible, and correct errors 
if they were aware of. We recommended the participants to 
take a break between two sessions. In total, the experiment 
for each participant took about 25-35 minutes. 

Results 
Across all participants, we collected 16,992, 17,161 and 16,997 
touch points from transcribed typing data in Eyes-on, Pe-
ripheral and No-keyboard modes, respectively. Touch points 
which were more than three times standard deviation away 
from the observed key centroid in either X or Y dimension 
were regarded as outliers and removed. Outliers accounted 
for 2.65%, 2.02% and 2.09% of letter-point pairs in our data 
for three modes, respectively. We also checked the videos to 
confrm all participants followed our requirements for gaze. 

Table 1: The mean standard deviation and ofset (mm) 
of touch point distributions of keys. 

Eyes-on Peripheral No-keyboard 

Standard 
Deviation 

X 

Y 

1.24±0.34 

1.05±0.29 

2.81±0.90 

1.96±0.53 

3.62±1.37 

3.18±1.14 

Ofset X 

Y 

-0.08±0.50 

1.18±0.60 

0.68±2.56 

-1.46±1.65 

-0.29±2.33 

-8.30±1.36 

The standard deviation of the touch point distribution 
upon a key refects how precise users’ touches on the key 
are. The mean standard deviation across all keys is given 
in Table 1. RM-ANOVA found a signifcant efect of typing 
modes on the mean standard deviation on X-axis (F2,34 = 118, 
p < .0001) and Y-axis (F2,34 = 147, p < .0001). Post hoc 
analysis showed that two gaze-fxed typing modes were 
signifcantly noisier than Eyes-on mode on both X- and Y-
axes, which caused the difculty of interpreting participants’ 
target keys. We also found the visibility of keyboard in par-
ticipants’ peripheral vision infuenced their typing behavior. 
Post hoc analysis found a signifcant diference between the 
mean standard deviations of Peripheral and No-keyboard on 
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X-axis (F1,17 = 25.0, p < .0001) and Y-axis (F1,17 = 70.7, 
p < .0001). Figure 3 showed the collected touch point in 
diferent typing modes, where a remarkable diference in the 
size of spread can be observed. 

Figure 3: Collected touch points across all participants in 
three modes. The ellipse covers 90% of touch points corre-
sponding to an individual key. 

The ofset between the centroid of the observed distribu-
tion and the actual centroid of a key refects whether there 
is a tendency of performing biased tapping for participants. 
The mean ofset of keys is given in Table 1. Results showed 
participants tended to tap a little below (positive ofset) the 
key centroid in Eyes-on mode, a little above (negative ofset) 
the key centroid in Peripheral mode, and far above the key 
centroid in No-keyboard mode (Figure 3). 

Discussion 

As expected, touch points in Peripheral mode appeared to 
be more accurate than No-keyboard mode. This can be ex-
plained by the positive efect of peripheral vision. Associated 
with peripheral vision, there is an actual frame reference for 
participants to position their thumbs around the desired key. 
While in No-keyboard mode, there was no reference so that 
participants would tap more sloppily. 
The result on touch ofsets showed that the visible key-

board efectively constrained participants’ tapping within 
the keyboard, while without the visual feedback participants 
tended to tap away from the original location of the key-
board. That indicates peripheral vision in the typing task 
indeed helped the participant to limit her thumbs around the 
approximate location of the split keyboard. 

4 ALGORITHM AND PERFORMANCE 
SIMULATION 

Before conducting an evaluation with real techniques, we 
frst conducted a simulation to provide a preview of the input 
prediction performance in each mode of study 1. In this 
section, we introduce our decoding algorithm of predicting 
the target word from the user’s touch points and report the 
simulation results. 

Decoding Algorithm 

We used a unigram Bayesian algorithm based on Goodman 
et al.’s method [13], with which given tap location sequences 
I = {(xi ,yi )}n 

=1 we can compute the posterior probability of i 
a word w = w1w2...wn in the corpus as follows [12, 18]: 

nÖ 
p(w |I ) = p(w) ∗ p(I |w)/p(I ) = p(w) ∗ p(Ii |wi )

i=1 

where p(w) represents the possibility of occurrence of w , 
and p(I ) is regarded as a constant and ignored. We used two 
Gaussian distributions [3, 18, 38] for X and Y axes to model 
one key and compute the probability of one tap as follows: 

p(Ii |wi ) = p(xi |Xwi ) ∗ p(yi |Ywi ) 

where Xwi and Ywi follow the Gaussian distributions of key 
wi . For each typing mode, the mean and standard deviation 
of the Gaussian distribution of each key in touch model can 
be derived from our collected data in study 1. 

Simulation Result 
We used the top 10,000 words with the corresponding fre-
quencies from ANC [1] as our corpus. We performed leave-
one-out cross-validation for the three modes, respectively, 
and computed the prediction accuracy. In each iteration, we 
trained parameters of the touch model using the data of 17 
participants and tested it on the data from the remaining 
participant. Finally, we averaged the accuracy. We reported 
top-1, top-5 and top-25 accuracy as the result, where top-K 
means the target word is within frst K candidates ranked by 
the algorithm according to the probability. 

Figure 4: Top-1, top-5 and top-25 accuracy of three modes. 
Error bars represent standard deviations. 
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Top-1 accuracy indicates the algorithm recommends ex-
actly the target word after participants fnish their taps. Top-1 
accuracy in Eyes-on, Peripheral and No-keyboard modes was 
99.7%, 92.3% and 75.0%, respectively (Figure 4). RM-ANOVA 
showed a signifcant diference between modes (F2,34 = 41.5, 
p < .0001). Post hoc analysis showed Peripheral mode sig-
nifcantly outperformed No-keyboard mode (F1,17 = 30.5, 
p < .0001) but was signifcantly worse than Eyes-on mode 
(F1,17 = 45.4, p < .0001). 

Top-5 and top-25 accuracy emerged similarly as top-1 
accuracy, Eyes-on mode was the best and No-keyboard mode 
was the worst. In addition, top-5 accuracy in Peripheral mode 
was over 99%, which signifcantly outperformed the top-
5 accuracy in No-keyboard mode (F1,17 = 13.8, p < .001). 
There was no signifcant diference between Peripheral and 
No-keyboard on top-25 accuracy. 

5 STUDY 2: PERFORMANCE OF PERIPHERAL 
TYPING 

In this study, we implemented a text input technique which 
enables typing with peripheral vision. This technique incor-
porates the decoding algorithm mentioned above and the 
touch model derived from typing data collected in study 1. 
The goal of this study is to examine the performance of 

peripheral typing in text entry tasks. We expect results would 
draw the beneft of peripheral typing compared with the 
conventional eyes-on one, and prove if peripheral typing is 
a promising mode for two-thumb text input on tablets. 

Participants and Apparatus 
We recruited 18 participants (15 males and 3 females, aged 
19-26) from the university campus. They were all familiar 
with QWERTY keyboard on mobile phones. 

We used the same tablet as study 1. The user interface and 
the swipe gestures remained the same, except we integrated 
the decoding algorithm into the software this time. 

To observe users’ gaze movement during typing, we also 
used a Pupil-Labs eye tracker for tracking the gaze of par-
ticipants. We attached markers on the tablet to defne the 
surface, and the eye tracker automatically determined the 
position of gaze point on the surface. The gaze point data 
were recorded at 30Hz. 

Experiment Design 

We designed a within-subject experiment with the only fac-
tor typing mode. Two modes were evaluated in this study: 
Eyes-on and Peripheral. Both were introduced in study 1. 

We integrated the decoding algorithm into the experiment 
platform, so participants could see real-time prediction re-
sults and select target words from the candidate list. The 
touch model for the decoding algorithm in each mode was 
trained individually from the corresponding data in study 1. 

According to our simulation result, the top-5 words could 
cover 99% of users’ intended word in both Eyes-on and Pe-
ripheral modes. Therefore, we showed 5 candidates with the 
highest probabilities in the candidate list for the participant 
to choose when the participant fnished her touch input. Due 
to the diference of the areas participants needed to gaze at, 
the location of the candidate list and its corresponding selec-
tion method were diferent in two modes. We will illustrate 
the impact of diferent settings of selection in the result. 

In Eyes-on mode, two candidate lists are located above the 
two split keyboard halves respectively, showing the same 
content. The participant directly taps on the target word 
shown in the candidate list to select it. This setting follows 
the current commercial text entry on tablets. 
In Peripheral mode, to avoid attention switching in the 

selection phase, the candidate list is located exactly beneath 
the word in the output text. When selecting, the participant 
can still fx her visual attention around the output text and 
perform a drag-release method to select top-5 candidates 
from the list. The participant frst drags either thumb hori-
zontally on the touchscreen to alter the highlighted target 
word in the candidate list, then releases the thumb to con-
frm the selection. In addition, a quick right swipe (less than 
100ms) is enabled for a quick selection of the top-1 word. This 
indirect selection method with in-situ thumbs was shown to 
be efcient [15, 18]. 

Procedure 

In the beginning, we introduced the goal of the experiment 
and the requirements of each mode. In addition, we intro-
duced the selection methods in two modes and required par-
ticipants to get used to the methods. We told participants to 
believe in the prediction power and allowed them to practice 
for 3-5 minutes in each mode. In Peripheral mode, partici-
pants were easy to follow our instruction for gaze due to the 
convenience of the gaze-fxed feature, and they would fnd 
it not difcult to enter a correct word because of the high 
accuracy of prediction. Then participants were required to 
input 40 phrases chosen randomly from MacKenzie’s phrases 
set [20] in each mode. We required participants to type as 
fast as possible in the premise of leaving no error. In each 
mode, the task was divided into 5 blocks and participants 
were required to take a break between two blocks. The order 
of presented modes was counterbalanced. After the whole 
experiment, participants were required to fll a NASA-TLX 
questionnaire to score for the two typing modes. The whole 
experiment lasted 30-40 minutes. 

Result 
Input Speed. The input speed was reported as 

|S | − 1 1 
WPM = × 60 × 

T 5 

CHI 2019 Paper  CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 200 Page 6



where S is the transcribed string and T is the time in seconds 
[9]. Average input speeds in Eyes-on and Peripheral modes 
were 21.02 (SD=2.90) WPM and 26.83 (SD=4.76) WPM, respec-
tively. RM-ANOVA showed typing in Peripheral mode signif-
icantly outperformed typing in Eyes-on mode (F1,17 = 58.0, 
p < .0001) with an increase in speed of 27.6%. This was be-
cause participants typed more freely in Peripheral mode. In 
Eyes-on mode, participants had to calibrate and aim at a key 
each time before they tapped it. In Peripheral mode, instead, 
they did not take time to execute this process. 

Figure 5: Input speed across blocks. Error bars represent 
standard deviations. 

RM-ANOVA also found a signifcant efect of blocks on 
input speed in Eyes-on mode (F4,68 = 5.21, p < .01), but not in 
Peripheral mode (F4,68 = 2.09, p = .09). Results showed there 
was a slight learning efect from block 1 to block 5 with a 
speed increase of 16.0% in Eyes-on mode and a speed increase 
of 9.4% in Peripheral mode (Figure 5). After 5 blocks, the input 
speed achieved 22.66 WPM and 28.66 WPM in Eyes-on and 
Peripheral modes, respectively. Although both speeds kept 
increasing in the last few blocks, peripheral typing yields a 
relatively higher typing speed than eyes-on typing. 

We also calculated the time consumption of the selection 
phase. The right swipe and the drag gesture consumed 5.4% 
and 3.5% of the total time in Peripheral mode, while selec-
tion with tapping only consumed 3.0% of the total time in 
Eyes-on mode. This confrmed that the higher input speed 
in peripheral typing than eyes-on typing was not caused by 
the selection method. 

Input Accuracy. Top-1 rate refects the percentage of en-
tering a target word without the selection phase, which is 
especially important since the selection phase takes much 
more time than a swipe gesture for confrmation. Top-1 rates 
of the decoding algorithm were 99.8% (SD=0.3%) and 90.0% 
(SD=7.3%) in Eyes-on and Peripheral modes, respectively. The 
result was in line with the simulation result (Figure 4). Top-1 
rate above 90% in Peripheral mode indicates that although 
the user typed “casually”, basic decoding algorithm and the 
language model are still able to predict from user’s noisy 
input. 
We calculated Word Error Rate (WER) to measure the 

input accuracy. We reported both corrected error (an error 

was made but corrected later) and uncorrected error (an error 
was made and remained in the fnal phrase) [37]. Corrected 
WER in Eyes-on and Peripheral modes were 1.3% and 4.7%, 
respectively, while uncorrected WER was 0.2% and 0.4%, 
respectively. RM-ANOVA showed Peripheral mode contained 
signifcantly more corrected errors (F1,17 = 28.8, p < .0001), 
which refects typing in Peripheral mode is less accurate than 
typing in Eyes-on mode. However, no signifcant diference 
was found on uncorrected error (F1,17 = 2.46, p = .14). 

Figure 6: Heat maps of gaze points on the tablet while typing 
in Eyes-on mode (left) and Peripheral mode (right). 

Gaze Behavior. We recorded 1,181,988 and 862,571 gaze 
points from the eye tracker in Eyes-on and Peripheral modes, 
respectively. We visualized the data as heat maps in Figure 6. 
The gaze data confrmed participants followed the require-
ment of each mode and pointed out the active areas of gaze 
in each mode. We found participants gazed more at the left 
keyboard half (43.6%) rather than the text feld (37.5%) and 
the right keyboard half (18.9%) in Eyes-on mode. This is be-
cause over 95% of tapping selections in Eyes-on mode were 
performed on the candidate list above the left keyboard half. 
Contrarily, participants mostly fxed their gaze at the text 
feld in Peripheral mode. 

We also calculated the moving distance of the gaze point 
per second as a metric for attention switching. Gaze mov-
ing distance per second in Eyes-on and Peripheral modes 
was 37.01cm (SD=11.71cm) and 11.62cm (SD=4.12cm), re-
spectively. This result proved peripheral typing could indeed 
reduce attention switching on the usage of the split keyboard. 

Figure 7: Participants’ subjective feedback. Error bars rep-
resent standard deviations. The higher the score, the more 
demanding a person believed the mode to be. 
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Figure 8: Interactions of GlanceType. (a) Tap on both sides of the split keyboard to input letters in either peripheral or eyes-on 
mode. (b) When performing peripheral typing, gaze fxes at the text feld. Swipe right to select the frst candidate or drag 
indirectly to select top-5 candidates from the list beneath the text. The target is highlighted in red. (c) When performing eyes-
on typing, direct tap on the candidate to select OOV words from the list above the keyboard. (d) Swipe upward to trigger an 
additional keyboard for entering punctuation symbols and digits. 

Subjective feedback. Wilcoxon signed-rank test showed 
there were signifcant diferences on mental demand (Z = 
−3.568, p < .0001), physical demand (Z = −2.316, p < 
.05), temporal demand (Z = −3.671, p < .0001), efort (Z = 
−3.373, p < .001), frustration (Z = −3.539, p < .0001) and 
performance (Z = −3.252, p < .001) between two modes. 
Typing in Peripheral mode was rated as the better one on 
all dimensions (Figure 7). All 18 participants reported they 
preferred typing in Peripheral mode. 

6 GLANCETYPE: SUPPORTING EYES-ON MODE IN 
PERIPHERAL TYPING 

One limitation of the decoding algorithm for peripheral typ-
ing in study 2 is the user cannot input out-of-vocabulary 
(OOV) words (e.g., uncommon names) because the algorithm 
relies on a predefned word vocabulary. In addition, enter-
ing arbitrary characters like punctuation symbols is also 
important for realistic keyboard techniques. Aim at these 
problems, we improved the design to support eyes-on mode 
in peripheral typing to allow users to input OOV words and 
non-alphabetic characters. 

We implement GlanceType, a keyboard technique that com-
bines both peripheral and eyes-on typing. We design a two-
candidate-region mechanism to support both typing modes 
at the same time: one candidate region is just beneath the 
output text (e.g., a URL container or a search box) on the top 
of the screen (Figure 8b) to avoid attention switching when 
typing with peripheral vision; the other candidate region is 
displayed just above the two split keyboard halves (Figure 
8c) to enable tap-based selection like conventional eyes-on 
typing. 
As mentioned in study 2, we design a drag-release ges-

ture to select candidates from the list beneath the output 
text in peripheral typing mode, so that the user does not 
need to switch visual attention when selecting candidates. 
The user drags either thumb horizontally anywhere on the 
touchscreen to trigger the selecting phase, moves the thumb 

to alter the highlighted target word, and fnally releases the 
thumb to confrm the selection (Figure 8b). This indirect se-
lecting method with in-situ thumbs was shown to be efcient 
[15, 18]. In addition, we extend right swipe (less than 100ms) 
for a quick selection of the top-1 word, since swipe gesture 
is clearly faster than drag-release operation. 
Our technique allows the user to freely choose eyes-on 

or peripheral typing mode without an explicit switching op-
eration. Two candidate regions are visible simultaneously, 
therefore, the candidate region the user selects depends on 
the user’s attention. When the user chooses to type in pe-
ripheral mode, a list of candidate words is generated by the 
algorithm and displayed beneath the output text. The user 
keeps her attention fxed at the output text region and drags 
to select the intended word (Figure 8b). When the user is 
looking at the keyboard and performing eyes-on typing, the 
candidate region just above the split keyboard halves displays 
the literal character string input by the user. She directly taps 
on this region to input the content (Figure 8c). 

With eyes-on mode supported, the user can not only input 
OOV words but also input punctuation symbols and digits. 
To achieve this, we allow the user to swipe upward on the 
keyboard to switch to a secondary keyboard containing spe-
cial characters (Figure 8d). The user swipes downward to 
return to the alphabetic keyboard. In addition, we also allow 
the user to input uppercase letters with a 300ms thumb press. 
A vibration occurs to signal the input. 

7 STUDY 3: EVALUATION IN MORE PRACTICAL 
TEXT ENTRY TASKS 

The goal of this study is to show that peripheral typing can 
well co-exist with the eyes-on typing in real use and improve 
the input performance. In this study, we will evaluate our 
design - GlanceType in a more practical task of tablets in-
cluding complex contents like OOV words and punctuation 
symbols. We will also observe user behaviors when users are 
free to determine typing with and without peripheral vision. 
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Participants and Apparatus 
The experiment of study 3 was conducted weeks after the 
experiment of study 2. We recruited 12 participants (10 males 
and 2 females, aged 19-25) who participated in the experi-
ment of study 2. All of them also had the experience of using 
commercial split keyboards on tablets. 
We used the same tablet in study 2 as the platform. We 

also used the same eye tracker to record participants’ gaze. 

Experiment Design and Procedure 

We chose sending email, chatting and using social media as 
typical scenarios using tablets, and arbitrarily selected 50 
phrases each from the email [32], dialogue [2] and Twitter 
[30] corpus as the phrases for our experiment. Every phrase 
includes at least one of the following components: OOV 
words, punctuation symbols or digits. Some of the phrases 
include uppercase letters. Punctuation symbols and digits 
make up 6.48% of total characters. OOV words make up 8.59% 
of all words, which is more than the existing work [24]. 
We designed a within-subject experiment with the only 

factor technique. Participants were required to input 30 ran-
domly selected phrases each with three techniques: 
GlanceType: is introduced in section 6. 
No-peripheral: is the control technique of GlanceType, 

which only shows one candidate region above the split key-
board. That is, it remains the same appearance and interac-
tion as GlanceType except the candidate region beneath the 
text feld for peripheral typing. 
Samsung-keyboard: is the default split keyboard text 

entry provided by Samsung tablets. It has auto-correction 
and auto-completion with a larger vocabulary and functional 
buttons for entering arbitrary characters, which represents 
a state-of-the-art commercial text entry. The candidate list 
is also shown above the split keyboard. 
No-peripheral and Samsung-keyboard have only one can-

didate region which is located right above split keyboard 
halves. GlanceType and No-peripheral share the same de-
coding algorithm, vocabulary and interactive design, while 
Samsung-keyboard is diferent. 
For the sake of observing the real behavior of users with 

peripheral typing, we did not force the typing strategies in 
this study. That is, the users were free to choose peripheral 
typing, eyes-on typing or some other strategies when using 
each technique. 
Before the experiment, we frst introduced the goal of 

this study and all three techniques. We showed all potential 
situations participants would meet (e.g., uppercase letters, 
OOV words or punctuation symbols), and introduced the way 
to deal with them. Since all participants have experienced 
peripheral typing and commercial split keyboard, they were 
required to familiarize with each technique for 3-5 phrases. 

Then participants were required to fnish the task as fast as 
possible in the premise of leaving no error. The presented 
order of the three techniques was counterbalanced. There 
was a break between two techniques. 

Result 
We recorded 341,076 gaze points from the eye tracker and 
4,243 touchscreen operations of users when participants used 
GlanceType. We synchronized gaze points with users’ touch 
events, and manually assigned labels: peripheral or non-
peripheral, for each time span of typing between two succes-
sive touch events to represent if the participant fxes the gaze 
at the text feld in this time span. The label is determined 
by the amount of gaze points fallen around two keyboard 
halves and the tendency of gaze movement within the time 
span. Time span in which the user’s gaze only fxed around 
the text feld was labeled peripheral, otherwise, it was la-
beled non-peripheral. Manual labels were used instead of 
automatically extracted labels since gaze movement was a 
continuous procedure with non-negligible noises. 

Figure 9: Input speed of three techniques. Error bars repre-
sent standard deviations. 

Input Speed. We still reported WPM defned in study 2 as 
the metric for evaluating the input speed. The average input 
speed of GlanceType, No-peripheral and Samsung-keyboard 
was 17.08 (SD=2.52), 15.48 (SD=1.97) and 15.97 (SD=2.18) 
WPM, respectively. Input speed of GlanceType was 10.3% 
higher than that of No-peripheral, and RM-ANOVA shows 
there was a signifcant diference between two techniques 
(F1,11 = 10.4, p < .01). Input speed of GlanceType was also 
7.0% higher than that of Samsung-keyboard, but no signifcant 
diference was found between two techniques (F1,11 = 2.06, 
p = .18). 

We divided the whole corpus into IV (in-vocabulary) words, 
OOV words and others (non-alphabetic contents) and mea-
sured the input speed when entering each of these compo-
nents to examine the detailed performance (Figure 9). Since 
the vocabulary in Samsung-keyboard was not controlled, we 
only compared GlanceType and No-peripheral here. The av-
erage input speed of GlanceType when entering IV words, 
OOV words and others was 19.47 (SD=2.76), 12.36 (SD=3.55) 
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and 10.42 (SD=1.77) WPM, respectively, while these of No-
peripheral were 16.56 (SD=2.09), 14.16 (SD=3.23) and 10.97 
(SD=2.42) WPM, respectively. RM-ANOVA showed Glance-
Type had a signifcantly higher speed than No-peripheral 
when entering IV words (F1,11 = 30.3, p < .001), but there 
was no signifcant diference between two techniques when 
entering OOV words (F1,11 = 0.66, p = .43) and others 
(F1,11 = 0.40, p = .54). 

The input speeds of GlanceType and No-peripheral were 
close when entering OOV words and non-alphabetic con-
tents. We explain that participants mainly used eyes-on typ-
ing. On the other hand, participants could use peripheral 
typing to enter IV word, so the input speed of GlanceType 
was higher. In general, typing speed can be increased by 
enabling peripheral typing for IV words, even compared to 
a commercial keyboard. 

Behaviors of GlanceType for IV words. According to the 
labeled data of touchscreen operations, we analyzed word-
level behaviors of entering IV words. 89.7% of IV words were 
entered with peripheral typing entirely (gaze fxed at the 
text feld). 1.8% of IV words were entered with attention 
switching. The remaining 8.5% of IV words were entered 
with the gaze frst at the keyboard but later with peripheral 
typing. We explain this behavior as a “pre-glance” before 
peripheral typing, which often took place when participants 
just fnished an OOV word or a non-alphabetic character. A 
“pre-glance” might promote mastering the positions of keys, 
and help participants to perform the frst tap confdently. 
Participants reached 19.94 WPM with entire peripheral 

typing. The input speed dropped to 16.29 WPM with a “pre-
glance”, and we explain this as a boot process to enter the 
fuent peripheral typing. Moreover, participants had only 
12.04 WPM with attention switching. This result indicated 
that participants had relatively high typing speed with fuent 
peripheral typing. The input speed of IV words dropped 
down after interrupts took place (e.g., enter a digit). 
Totally 98.2% of IV words were entered with peripheral 

typing. This result showed that participants were willing to 
use the gaze-fxed feature of GlanceType to enter IV words. 
Considering individual participants, the highest ratio of en-
tering IV words with peripheral typing was 100%, and the 
lowest was 85%. 

Behaviors of GlanceType for OOV words. On average, 10.7% 
of OOV words was entered with the gaze fxed at the text 
feld. This result was somewhat beyond our expectation since 
we expected OOV words could only be entered in eyes-on 
mode. We further analyzed the data, and we found some-
times participants treated an OOV word as an IV word and 
tried to enter it with peripheral typing. This behavior also 
slowed down the speed of GlanceType for entering OOV 
words. When using peripheral typing in real scenarios, how 

to identify a word as OOV or not is an important problem 
for users. We will discuss it in the limitation. 

8 LIMITATION 

There were some limitations of our approach. First, the pro-
portion of peripheral vision was not controlled in our ex-
periments. Visual acuity [4] which afects the capability of 
peripheral vision may be diferent in some other conditions 
using tablets, like walking, portrait posture, etc. Second, our 
approach of decoding noisy touch input can be improved. 
Bigram or even sentence-level language model can be em-
ployed for better interpreting user’s intention. Third, how to 
be aware of OOV words when using GlanceType infuences 
the user experience by retyping. Personalizing a user’s vo-
cabulary is one solution since an OOV word will become IV 
after the frst input. 

9 CONCLUSION 

In this paper, we investigate an unconventional typing mode 
for text input on tablets - typing with peripheral vision, to 
enable fast and comfortable typing with two thumbs on the 
split keyboard. With peripheral typing, users focus on the 
output text feedback only, meanwhile, they perform typing 
on the keyboard in their peripheral vision. Our frst study 
showed a visible keyboard in participants’ peripheral vision 
was helpful to decrease typing noise. An empirical control 
study proved peripheral typing could achieve 27 WPM with 
over 90% top-1 accuracy, and signifcantly outperformed 
conventional eyes-on typing. Peripheral typing also reduced 
attention switching on the split keyboard and was preferred 
by the participants. Then, we designed GlanceType, a text 
entry supporting both peripheral typing and eye-on typ-
ing for entering OOV words and arbitrary characters. Our 
real-scenario study showed GlanceType had a competitive 
input speed of entering any content in real use, which was 
7.0% faster than a commercial split keyboard. Participants 
also preferred to use peripheral typing to improve the input 
performance of IV words. 
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